Table 1.--Stratigraphic and hydrogeologic units in the Dolores River basin [Based in part on Eckel (1949), Hunt (1958), Williams (1964), Witkind (1964), Ekren and Houser (1965), and Haynes, Vogel, and Wyant (1972)] | System | Series
or
epoch | Str | atigraphic unit | Thick-
ness
(meters) | Lithologic characteristics | Principal water-bearing characteristics | Hydrogeol
unit | |-----------------------------------|---------------------------------------|---|---|----------------------------|---|---|--| | uater-
nary | Holocene
and
Pleisto-
cene | | Alluvium | | Alluviumclay, silt, sand, and gravel. Eolian depositsfine to coarse sand. Colluvium and tillunsorted clay, silt, sand, gravel, cobbles, and boulders. | Comprise the principal water-bearing material and source of ground water in the larger valleys. | Alluvial
aquifer | | ertiary | | lacco | ve rocks, usually
liths, sills, dikes,
tocks. | | Igneous rocks; mostly porphyritic diorite, quartz diorite, granodiorite, quartz monzonite, and syenite. | Precipitation may enter these rocks where they are intensely fractured and subsequently recharge adjacent permeable sedimentary rocks. Yields water to a few high-altitude springs. | Tertiary-
Upper
Creta- | | | - W | Mesaver
Group | | 122+ | Yellowish-gray sandstone with inter-
beds of gray shale. Mostly
present on the high mesas in the
southeast part of the area. | Yields water to numerous small freshwater springs. | ceous
aquifer | | | Upper
Creta- | ,M | lancos Shale | 366-
1,914 | Dark-gray, fissile, marine shale. | Not water bearing. | Cretaceou
confinin
beds | | Creta-
ceous | ceous | | Juana Lopez Member | 8-30 | Occurs 152 meters above the base of
the Mancos Shale. Sandy fossilif-
erous limestone. Only present in
the southern part of the area. | Yields some water. | | | | | Dak | ota Sandstone | 3-69 | Sandstone and conglomerate with interbeds of carbonaceous shale. | V. 1 | | | | — ? — ? ·
Lower
Creta-
ceous | Burro Canyon Formation | | 0-61 | Green mudstone interbedded with con-
glomerate and conglomeratic sand-
stone. Only present in the west
part of the area. | Yield water to numerous small fresh-
water springs. | | | | | Morrison Formation | | 69-
290 | Friable fine-grained, yellowish-brown to gray sandstone and variegated shales. | Yields some water where the Westwater
Canyon or Saltwash Members are
present. | | | | | | Brushy Basin Member | 46-
213 | Bentonitic varicolored mudstone. | Not water bearing. | | | Jurassic | Upper
Jurassic | | Westwater Canyon
Member | 0-61 | Fine- to medium-grained sandstone; present only in the southwest part of the area. | Yields small quantities of water. | | | | | | Recapture Creek
Member | 0-61 | Reddish-gray, white, and brown sand-
stone interbedded with reddish-gray
siltstone. Present only in the
southwest part of the area. | Not water bearing. | | | | | | Saltwash Member | 0-168 | Interbedded yellowish-gray sandstone and red mudstone. | Yields small quantities of freshwater. | | | | | Junction Creek Sandstone | | 49-
152 | Massive, cross-bedded coarse-grained, friable, white sandstone. Not present in the southeast part of the area. | Yields water to both springs and wells. | Mesozoic
sandstone
aquifer | | | Middle
Jurassic | Summerville Formation
(lateral equivalent
of Wanakah) | | 0-61 | Evenly bedded, dark reddish-brown siltstone, shale, and sandy siltstone. Not present in the southeast part of the area. | Not water bearing. | | | | | Rafael
Group ——— | anakah Formation | 8-46 | Upper part, pink to red sandy marl;
lower part gray to black massive
limestone. Present only in the
southeast part of the area. | Confining unit. | aquifer | | | | | ntrada Sandstone | 14-
168 | Buff to grayish-white, fine- to medium-grained, cross-bedded sandstone. | | | | | | | Moab Sandstone
Member | 0-15 | Pale orange to white, massive, cross-
bedded, very fine-grained sandstone.
Thins to east. | Water bearing. | | | | | | Slick Rock
Member | 21-55 | Pale orange, fine- to medium-grained sandstone. | | | | | | | Dewey Bridge Member
(grades into
Carmel Formation
of some reports) | 0-37 | Brick red, flat to contorted beds, argillaceous, silty to very fine-grained sandstone. Thins to east. | Not water bearing. | | | Triassic
(?) | Lower Jurassic and Upper Triassic (?) | Glen
Canyon | Navajo Sandstone | 0-125 | Orange to light-brown, fine- to medium-grained, cross-bedded eolian sandstone. Thins rapidly to the east. | | | | | Upper
Triassic
(?) | Kayenta Formation Wingate Sandstone | | 0-73 | Pale to dark-red or purplish-gray shale, siltstone, and fine- to coarse-grained sandstone. Thins rapidly to the east. | Yields little or no water. | Mesozoic-
Upper
Paleozoic
confining
beds | | | | | | 0-137 | Reddish-brown to buff, very fine- to fine-grained, eolian sandstone. Thins to the east. | Yields water to numerous small fresh-
water springs. | | | | Upper | | | 152-229 | Salmon-pink to bright-red mudstone
and fine-grained sandstone of Late
Triassic age. Equivalent to lower
part of Glen Canyon Group and under-
lying Chinle Formation. Present
only in the southeast part of area. | Confining units. | | | | Triassic | to the second | | 0-427 | Varicolored pale-red to reddish-brown mudstone and red, reddish-brown, and orange-red siltstone, sandstone, and shale. Thins to the north and east. | | | | | | Moenkopi Formation | | 0-305 | Chocolate-brown to brick-red sandy mudstone, sandstone, and arkosic conglomerate. Thins to the north and east. | Not water bearing. | | | Permian | | Cutler Formation | | 0-
1,700± | Red to purple arkosic sandstone. Thins northeastward on to the flanks of the Uncompangre Plateau. | Yields small quantities of water where fractured. | | | | Upper | Rico Formation | | 0-198 | Reddish-brown and greenish-gray sand-
stone and gray fossiliferous cherty
limestone. Thins to the northeast. | Generally a confining unit but might | | | | Pennsyl-
vanian
and
Lower | Upper Member | | 0-550 | Green to gray and dull-red arkosic sandstone, shale, and fossiliferous limestone. | yield small quantities of water where fractured. | | | | Pennsyl-
vanian | Formation Paradox Member | | 0-
3,350 | Salt, gypsum, carbonaceous shale, sandstone, and dolomite. | Yields no water. | Salt, con
ing bed | | ennsyl-
vanian
- | vanian | | | 0.00 | Interbedded red siltstone, sandstone, limestone, and shale. | Confining unit. | Upper
Paleozoic
confining
beds | | vanian
- | Lower
Pennsyl-
vanian | Mol | as Formation | 0-23 | | | Lower | | vanian
-
lissis- | Lower
Pennsyl- | | as Formation | 18-92 | Massive to thinly laminated, gray, buff, and yellow limestone. | _ | Lower | | vanian
-
dissis-
sippian | Lower
Pennsyl-
vanian | Leadv | | | Massive to thinly laminated, gray, buff, and yellow limestone. Limestone and shale | Transmits caltwater through freetunes | | | vanian - dissis- sippian Devonian | Lower Pennsyl- vanian Upper Devonian | Leadv
Our
Elbe | ille Limestone | 18-92 | Massive to thinly laminated, gray, buff, and yellow limestone. Limestone and shale | Transmits saltwater through fractures. | Lower
Paleozoic |